Login / Signup

Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization.

Junhui SuiMengmeng HeYuedi YangMengcheng MaZhihao GuoMingda ZhaoJie LiangYong SunYujiang FanXingdong Zhang
Published in: ACS applied materials & interfaces (2020)
For reversing the treatment failure in P-glycoprotein (P-gp)-associated MDR (multidrug resistance) of breast cancer, a high dose of Lapatinib (Lap), a substrate of breast cancer-resistant protein, was encapsulated into safe and effective acid-cleavable polysaccharide-doxorubicin (Dox) conjugates to form targeted HPP-Dox/Lap nanoparticles with an optimal drug ratio and appropriate nanosize decorated with oligomeric hyaluronic acid (HA) for specially targeting overexpressed CD44 receptors of MCF-7/ADR. The markedly increased cellular uptake and the strongest synergetic cytotoxicity revealed the enhanced reversal efficiency of HPP-Dox/Lap nanoparticles with reversal multiples at 29.83. This was also verified by the enhanced penetrating capacity in multicellular tumor spheroids. The reinforced Dox retention and substantial down-regulation of P-gp expression implied the possible mechanism of MDR reversal. Furthermore, the efficient ex vivo accumulation and distribution of nanoparticles in the tumor site and the high tumor growth inhibition (93%) even at a lower dosage (1 mg/kg) as well as lung metastasis inhibition in vivo with negligible side effects revealed the overwhelming advantages of targeted polysaccharide nanoparticles and Lap-sensitizing effect against drug-resistant tumor. The development of an efficient and nontoxic-targeted polysaccharide delivery system for reversing MDR by synergistic therapy might provide a potential clinical application value.
Keyphrases