Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites.
Sara KhanFaiza AminRafat AminNaresh KumarPublished in: Polymers (2024)
The aim of this study was to evaluate the effect of cetylpyridinium chloride (CPC) addition on the antibacterial and surface hardness characteristics of two commercial resin-based dental composites (RBDCs). A total of two hundred and seventy ( n = 270) specimens from Filtek Z250 Universal and Filtek Z350 XT flowable RBDCs were fabricated with the addition of CPC at 2 %wt and 4 %wt concentrations to assess their antibacterial activity using the agar diffusion test and direct contact inhibition test, and their surface hardness using the Vickers microhardness test after 1 day, 30 days, and 90 days of aging. A surface morphology analysis of the specimens was performed using a scanning electron microscope (SEM). The RBDCs that contained 2 %wt and 4 %wt CPC demonstrated significant antibacterial activity against Streptococcus mutans up to 90 days, with the highest activity observed for the 4 %wt concentration. Nevertheless, there was a reduction in antibacterial effectiveness over time. Moreover, compared to the control (0 %wt) and 2 %wt CPC groups, the universal RBDCs containing 4 %wt CPC exhibited a notable decrease in surface hardness, while all groups showed a decline in hardness over time. In conclusion, the satisfactory combination of the antibacterial effect and surface hardness property of RBDCs was revealed with the addition of a 2 %wt CPC concentration.