A systematic nutrition intervention for low iron status in collegiate distance runners.
Joseph R StanzioneGracie BellDaniel A GreenwoodPublished in: Nutrition and health (2022)
Background: Iron is a trace mineral that plays a significant role in oxygen transport and energy production during exercise. In deficiency, iron can have a significant negative impact on sports performance. Due to its relative simplicity, supplementation is a common treatment to combat deficiency. However, there is a paucity of analyses combining supplementation with dietary education as a method of treatment. Objective: To assess the effectiveness of a systematic iron intervention combining nutrition education and supplementation stages to combat low ferritin levels in collegiate runners. Methods: Twenty four distance runners (13 women; 11 men; 19.5 ± 0.8 years of age) were measured for serum ferritin, daily iron, calcium and vitamin C intake at the start of the fall semester and again after 100 days of supplementation. A dependent groups t-test was applied to delineate changes in Ferritin levels and iron, vitamin C and calcium intake. Alpha levels were maintained a priori at p < 0.05. Results: Ferritin levels averaged 40.0 ± 22.6 ng/mL in Fall and 33.7 ± 14.7 ng/mL in Spring. There were no statistical differences in ferritin levels from Fall to Spring (p = 0.074). Weekly Iron intake (# of foods) significantly increased from Fall (110.8 ± 43.1) to Spring (123.3 ± 43.9), (p = 0.028). There were no significant changes in Vitamin C or Calcium intake between time points (p = 0.441), (p = 0.901). Conclusion: We found no significant differences in serum ferritin measures but dietary intake of iron increased as a result of the intervention.