Login / Signup

MiR-424-5p Inhibits Proliferation, Migration, Invasion and Angiogenesis of the HTR-8/SVneo Cells Through Targeting LRP6 Mediated β-catenin.

Kuilin FeiHuihui ZhangWeishe ZhangCan Liao
Published in: Reproductive sciences (Thousand Oaks, Calif.) (2024)
The aim of this study was to investigate the effects of miR-424-5p on biological behaviors and angiogenesis of the HTR-8/SVneo Cells. Our study included 60 parturient women, which were divided into an PA group (placenta accreta, n = 30) and a normal group (normal placenta, n = 30). QPCR was used to measure the expression of miR-424-5p in placental tissues. The effects of the miR-424-5p mimic on proliferation, migration, and invasion of human HTR-8/SVneo cells and angiogenesis were analyzed. The potential modulated relationship between miR-424-5p and low-density lipoprotein receptor-related protein-6 (LRP6) was demonstrated by luciferase assay. The expression of LRP6, β-catenin, matrix metalloproteinase-2 (MMP-2), placental growth factor (PGF) and vascular endothelial growth factor (VEGF) were measured by qPCR and Western blot assays. The expression of miR-424-5p in the PA group was significantly decreased than that in the normal group. The expression of miR-424-5p has negative correlation with blood loss. Upregulation of miR-424-5p significantly suppressed the cell proliferation, migration, and invasion of HTR-8/SVneo cells in vitro, as well as the tube formation of human umbilical vein endothelial cells (HUVECs). The luciferase assay demonstrated that LRP6 was a target of miR-424-5p. The expression of LRP6, β-catenin, MMP-2, PGF and VEGF were also decreased with upregulation of miR-424-5p (p < 0.05). The inhibitory effects of miR-424-5p on HTR-8/SVneo cells and angiogenesis were enhanced by downregulation of LRP6, but were reversed by upregulation of LRP6. The present study suggests that downregulation of miR-424-5p is related to the occurrence of PA. Enhancing miR-424-5p inhibits proliferation, migration, invasion and angiogenesis of the HTR-8/SVneo cells through targeting LRP6 mediated β-catenin, providing more insights about PA.
Keyphrases