Login / Signup

PI3K/AKT inhibitor BEZ-235 targets CCND2 and induces G1 arrest in breast implant-associated anaplastic large cell lymphoma.

Stefan NagelAnja FischerSusanne BensVivien HauerClaudia PommerenkeCord C UphoffMargarete ZaborskiReiner SiebertHilmar Quentmeier
Published in: Leukemia research (2023)
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a mature, CD30-positive T-cell lymphoma lacking expression of the anaplastic lymphoma kinase (ALK). In contrast to ALK-positive ALCL, BIA-ALCL cells express cyclin D2 (CCND2) which controls cyclin dependent kinases 4 and 6 (CDK4/6). DNA methylation and expression analyses performed with cell lines and primary cells suggest that the expression of CCND2 in BIA-ALCL cell lines conforms to the physiological status of differentiated T-cells, and that it is not the consequence of genomic alterations as observed in other hematopoietic tumors. Using cell line model systems we show that treatment with the CDK4/6 inhibitor palbociclib effects dephosphorylation of the retinoblastoma protein (RB) and causes cell cycle arrest in G1 in BIA-ALCL. Moreover, we show that the PI3K/AKT inhibitor BEZ-235 induces dephosphorylation of the mTORC1 target S6 and of GSK3β, indicators for translational inhibition and proteasomal degradation. Consequently, CCND2 protein levels declined after stimulation with BEZ-235, RB was dephosphorylated and the cell cycle was arrested in G1. Taken together, our data imply potential application of CDK4/6 inhibitors and PI3K/AKT inhibitors for the therapy of BIA-ALCL.
Keyphrases