Tumor-Derived Small Extracellular Vesicles Induce Pro-Inflammatory Cytokine Expression and PD-L1 Regulation in M0 Macrophages via IL-6/STAT3 and TLR4 Signaling Pathways.
Marzia PucciStefania RaimondoOrnella UrzìMarta MoschettiMaria Antonietta Di BellaAlice ConigliaroNadia CaccamoMarco Pio La MannaSimona FontanaRiccardo AlessandroPublished in: International journal of molecular sciences (2021)
Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.
Keyphrases
- signaling pathway
- induced apoptosis
- poor prognosis
- multiple myeloma
- pi k akt
- cell cycle arrest
- binding protein
- toll like receptor
- endoplasmic reticulum stress
- long non coding rna
- inflammatory response
- oxidative stress
- cell proliferation
- epithelial mesenchymal transition
- stem cells
- nuclear factor
- electronic health record
- protein protein