Login / Signup

A Michael Acceptor Analogue, SKSI-0412, Down-Regulates Inflammation and Proliferation Factors through Suppressing Signal Transducer and Activator of Transcription 3 Signaling in IL-17A-Induced Human Keratinocyte.

A-Ram KimSeungbeom LeeJung U ShinSeung Hui SeokYoung-Ger SuhDong Hyun Kim
Published in: International journal of molecular sciences (2021)
The activation of signal transducer and activator of transcription 3 (STAT3), as well as up-regulation of cytokines and growth factors to promote STAT3 activation, have been found in the epidermis of psoriatic lesions. Recently, a series of synthetic compounds possessing the Michael acceptor have been reported as STAT3 inhibitors by covalently binding to cysteine of STAT3. We synthesized a Michael acceptor analog, SKSI-0412, and confirmed the binding affinity between STAT3 and SKSI-0412. We hypothesized that the SKSI-0412 can inhibit interleukin (IL)-17A-induced inflammation in keratinocytes. The introduction of IL-17A increased the phosphorylation of STAT3 in keratinocytes, whereas the inactivation of STAT3 by SKSI-0412 reduced IL-17A-induced STAT3 phosphorylation and IκBζ expression. In addition, human β defensin-2 and S100A7, which are regulated by IκBζ, were significantly decreased with SKSI-0412 administration. We also confirmed that SKSI-0412 regulates cell proliferation, which is the major phenotype of psoriasis. Based on these results, we suggest targeting STAT3 with SKSI-0412 as a novel therapeutic strategy to regulate IL-17A-induced psoriatic inflammation in keratinocytes.
Keyphrases
  • cell proliferation
  • high glucose
  • oxidative stress
  • diabetic rats
  • endothelial cells
  • signaling pathway
  • rheumatoid arthritis
  • drug induced
  • cell cycle
  • poor prognosis
  • pi k akt
  • long non coding rna
  • toll like receptor