High level production of stable human serum albumin in Pichia pastoris and characterization of the recombinant product.
Nitu MaityAvijeet S JaswalAshwani GautamVikram SahaiSaroj MishraPublished in: Bioprocess and biosystems engineering (2022)
Human serum albumin (HSA) is an important therapeutic used in clinical settings for restoration of blood volume and treatment of chemotherapy induced neutropenia. Currently sourced from human serum, it carries the risk of contamination with viruses. The production of stable extracellular recombinant (r)HSA was achieved at nearly 1 g/L at shake-flask level in Pichia pastoris (syn. Komagataella phaffii) containing a three-copy containing HSA expression cassette, prepared in vitro. The HSA specific transcripts were increased by 1.82- to 2.46-fold in the three-copy containing clones indicating increased transcript levels to result in enhanced production of extracellular rHSA. The purified rHSA displayed secondary structure, zeta potential, size distribution and biological efficacy that matched with that of the commercial HSA. Cultivation strategy was developed at bioreactor level for the single HSA expression cassette containing recombinant which led to productivity of 300 mg/L/d of rHSA with minimum proteolytic cleavage.