Login / Signup

Ligand-Enabled C-H Hydroxylation with Aqueous H 2 O 2 at Room Temperature.

Zhen LiHan Seul ParkJennifer X QiaoKap-Sun YeungJin-Quan Yu
Published in: Journal of the American Chemical Society (2022)
With the large number of Pd(II)-catalyzed C-H activation reactions of native substrates developed in the past decade, the development of catalysts to enable the use of green oxidants under safe and practical conditions has become an increasingly important challenge. Notably, the compatibility of Pd(II) catalysts with sustainable aqueous H 2 O 2 has been a long-standing challenge in catalysis including Wacker-type oxidations. We report herein a bifunctional bidentate carboxyl-pyridone (CarboxPyridone) ligand that enables room-temperature Pd-catalyzed C-H hydroxylation of a broad range of benzoic and phenylacetic acids with an industry-compatible oxidant, aqueous hydrogen peroxide (35% H 2 O 2 ). The scalability of this methodology is demonstrated by a 1000 mmol scale reaction of ibuprofen (206 g) using only a 1 mol % Pd catalyst loading. The utility of this protocol is further illustrated through derivatization of the products and synthesis of polyfluorinated natural product coumestan and pterocarpene from phenol intermediates prepared using this methodology.
Keyphrases