Chemical composition and toxicity studies on Lantana camara L. flower essential oil and its in silico binding and pharmacokinetics to superoxide dismutase 1 for amyotrophic lateral sclerosis (ALS) therapy.
Abdullah HaikalAhmed R AliPublished in: RSC advances (2024)
Using the gas chromatography mass spectrometry method, the chemical components of essential oil from flowers of Lantana camara growing in Egypt are analyzed. Through this investigation, 22 chemicals from floral oil were identified. Most of the oil is made up of sesquiterpene caryophyllene (15.51%) and monoterpene sabinene (14.90%). When the oil's composition was compared to oils extracted from the same plant on several continents, we observed that the essential components were largely the same with some difference in proportions and some compounds due to geographical differences. A molecular docking study of essential oil components was conducted with human superoxide dismutase 1, a target involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). Isospathulenol showed a comparable docking score to the reference ligand bound to the dismutase enzyme. Isospathulenol showed a reasonable drug score with some safety concerns. In addition, isospathulenol is predicted to have high GI absorption, good permeability through the blood-brain barrier and reasonable bioavailability score with ease access to synthetic modifications. In addition, the same compound is devoid from any violation to Lipinski rules or any PAINS alerts. This may establish the promising characteristics of such a compound to be optimized into potential drug candidates for treatment of ALS.
Keyphrases
- amyotrophic lateral sclerosis
- essential oil
- molecular docking
- gas chromatography mass spectrometry
- molecular dynamics simulations
- endothelial cells
- fatty acid
- hydrogen peroxide
- molecular dynamics
- oxidative stress
- adverse drug
- drug induced
- combination therapy
- stem cells
- protein protein
- nitric oxide
- climate change
- mesenchymal stem cells
- small molecule
- dna binding
- cell therapy
- high resolution
- replacement therapy