Ranked Subtree Prune and Regraft.
Lena CollienneChris WhiddenAlex GavryushkinPublished in: Bulletin of mathematical biology (2024)
Phylogenetic trees are a mathematical formalisation of evolutionary histories between organisms, species, genes, cancer cells, etc. For many applications, e.g. when analysing virus transmission trees or cancer evolution, (phylogenetic) time trees are of interest, where branch lengths represent times. Computational methods for reconstructing time trees from (typically molecular) sequence data, for example Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) methods, rely on algorithms that sample the treespace. They employ tree rearrangement operations such as [Formula: see text] (Subtree Prune and Regraft) and [Formula: see text] (Nearest Neighbour Interchange) or, in the case of time tree inference, versions of these that take times of internal nodes into account. While the classic [Formula: see text] tree rearrangement is well-studied, its variants for time trees are less understood, limiting comparative analysis for time tree methods. In this paper we consider a modification of the classical [Formula: see text] rearrangement on the space of ranked phylogenetic trees, which are trees equipped with a ranking of all internal nodes. This modification results in two novel treespaces, which we propose to study. We begin this study by discussing algorithmic properties of these treespaces, focusing on those relating to the complexity of computing distances under the ranked [Formula: see text] operations as well as similarities and differences to known tree rearrangement based treespaces. Surprisingly, we show the counterintuitive result that adding leaves to trees can actually decrease their ranked [Formula: see text] distance, which may have an impact on the results of time tree sampling algorithms given uncertain "rogue taxa".
Keyphrases
- smoking cessation
- human milk
- deep learning
- monte carlo
- genome wide
- single cell
- squamous cell carcinoma
- young adults
- big data
- sentinel lymph node
- electronic health record
- early stage
- transcription factor
- radiation therapy
- preterm infants
- lymph node
- multidrug resistant
- single molecule
- neoadjuvant chemotherapy
- gram negative