SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations.
Hunter J MeltonZichen ZhangChong WuPublished in: medRxiv : the preprint server for health sciences (2023)
Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the accuracy of gene expression prediction by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models using SUMMIT-FA with a comprehensive functional database MACIE and the eQTL summary-level data from the eQTLGen consortium. By applying the resulting models to GWASs for 24 complex traits and exploring it through a simulation study, we show that SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, identifies significantly more gene-trait associations, and improves predictive power for identifying "silver standard" genes compared to several benchmark methods.