Tumors Resistant to Checkpoint Inhibitors Can Become Sensitive after Treatment with Vascular Disrupting Agents.
Michael R HorsmanThomas R WittenbornPatricia Switten NielsenPernille B ElmingPublished in: International journal of molecular sciences (2020)
Immune therapy improves cancer outcomes, yet many patients do not respond. This pre-clinical study investigated whether vascular disrupting agents (VDAs) could convert an immune unresponsive tumor into a responder. CDF1 mice, with 200 mm3 C3H mammary carcinomas in the right rear foot, were intraperitoneally injected with combretastatin A-4 phosphate (CA4P), its A-1 analogue OXi4503, and/or checkpoint inhibitors (anti-PD-1, PD-L1, or CTLA-4 antibodies), administered twice weekly for two weeks. Using the endpoint of tumor growth time (TGT5; time to reach five times the starting volume), we found that none of the checkpoint inhibitors (10 mg/kg) had any effect on TGT5 compared to untreated controls. However, CA4P (100 mg/kg) or OXi4503 (5-50 mg/kg) did significantly increase TGT5. This further significantly increased by combining the VDAs with checkpoint inhibitors, but was dependent on the VDA, drug dose, and inhibitor. For CA4P, a significant increase was found when CA4P (100 mg/kg) was combined with anti-PD-L1, but not with the other two checkpoint inhibitors. With OXi4503 (50 mg/kg), a significant enhancement occurred when combined with anti-PD-L1 or anti-CTLA-4, but not anti-PD-1. We observed no significant improvement with lower OXi4503 doses (5-25 mg/kg) and anti-CTLA-4, although 30% of tumors were controlled at the 25 mg/kg dose. Histological assessment of CD4/CD8 expression actually showed decreased levels up to 10 days after treatment with OXi4503 (50 mg/kg). Thus, the non-immunogenic C3H mammary carcinoma was unresponsive to checkpoint inhibitors, but became responsive in mice treated with VDAs, although the mechanism remains unclear.
Keyphrases
- dna damage
- cell cycle
- end stage renal disease
- chronic kidney disease
- newly diagnosed
- cell proliferation
- stem cells
- type diabetes
- ejection fraction
- poor prognosis
- high grade
- oxidative stress
- metabolic syndrome
- peritoneal dialysis
- mesenchymal stem cells
- emergency department
- drug delivery
- young adults
- mass spectrometry
- preterm birth
- atomic force microscopy
- prognostic factors
- single molecule
- adverse drug