Controlling A x Mn[Fe(CN) 6 ] charge transfer pathways through tilt-engineering for enhanced metal-to-metal interactions.
A RegueiroJavier Castells-GilC ShenI MikulskaC AllenL BoganiRamón Torres-CavanillasPublished in: Materials advances (2024)
The induction of structural distortion in a controlled manner through tilt engineering has emerged as a potent method to finely tune the physical characteristics of Prussian blue analogues. Notably, this distortion can be chemically induced by filling their pores with cations that can interact with the cyanide ligands. With this objective in mind, we optimized the synthetic protocol to produce the stimuli-responsive Prussian blue analogue A x Mn[Fe(CN) 6 ] with A = K + , Rb + , and Cs + , to tune its stimuli-responsive behavior by exchanging the cation inside pores. Our crystallographic analyses reveal that the smaller the cation, the more pronounced the structural distortion, with a notable 20-degree Fe-CN tilting when filling the cavities with K + , 10 degrees with Rb + , and 2 degrees with Cs + . Moreover, this controlled distortion offers a means to switch on/off its stimuli-responsive behavior, while modifying its magnetic response. Thereby empowering the manipulation of the PBA's physical properties through cationic exchange.
Keyphrases
- metal organic framework
- lymph node metastasis
- cancer therapy
- ionic liquid
- physical activity
- mental health
- randomized controlled trial
- aqueous solution
- squamous cell carcinoma
- genome wide
- molecular docking
- single cell
- drug delivery
- gene expression
- anti inflammatory
- light emitting
- transition metal
- mass spectrometry
- molecularly imprinted
- high resolution