Login / Signup

ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes.

Renata Vieira de SáEmma Sudria-LopezMarta Cañizares LunaOliver HarschnitzDianne M A van den HeuvelSandra KlingDanielle VonkHenk-Jan WestenengHenk KarstLauri BloemenkampSuzy Varderidou-MinasianDomino K SchlegelMayte MarsMark H BroekhovenNicky C H van KronenburgYouri AdolfsVamshidhar R VangoorRianne de JonghTijana LjubikjLianne PeetersSabine SeelerEnric MocholiOnur BasakDavid GordonFabrizio GiulianiTessa VerhoeffGiel KorstenTeresa Calafat PlaMorten T VenøJørgen KjemsKevin TalbotMichael A Van EsJan Herman VeldinkLeonard H van den BergPavol ZelinaRonald Jeroen Pasterkamp
Published in: Nature communications (2024)
Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43 Tg -ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy.
Keyphrases