Login / Signup

Tailored Hollow Mesoporous Carbon Nanospheres from Soft Emulsions Enhance Kinetics in Sodium Batteries.

Lu LiuSicheng FanWendi WangSixing YinZirui LvJie ZhangJingyu ZhangLanhao YangYuzhu MaQiulong WeiDongyuan ZhaoKun Lan
Published in: JACS Au (2024)
Mesoporous materials endowed with a hollow structure offer ample opportunities due to their integrated functionalities; however, current approaches mainly rely on the recruitment of solid rigid templates, and feasible strategies with better simplicity and tunability remain infertile. Here, we report a novel emulsion-driven coassembly method for constructing a highly tailored hollow architecture in mesoporous carbon, which can be completely processed on oil-water liquid interfaces instead of a solid rigid template. Such a facile and flexible methodology relies on the subtle employment of a 1,3,5-trimethylbenzene (TMB) additive, which acts as both an emulsion template and a swelling agent, leading to a compatible integration of oil droplets and composite micelles. The solution-based assembly process also shows high controllability, endowing the hollow carbon mesostructure with a uniform morphology of hundreds of nanometers and tunable cavities from 0 to 130 nm in diameter and porosities (mesopore sizes 2.5-7.7 nm; surface area 179-355 m 2 g -1 ). Because of the unique features in permeability, diffusion, and surface access, the hollow mesoporous carbon nanospheres exhibit excellent high rate and cycling performances for sodium-ion storage. Our study reveals a cooperative assembly on the liquid interface, which could provide an alternative toolbox for constructing delicate mesostructures and complex hierarchies toward advanced technologies.
Keyphrases