Login / Signup

Effects of saikosaponin-d on CYP3A4 in HepaRG cell and protein-ligand docking study.

Hongfang LiYunyan TangWeipeng WeiChengchen YinFushang Tang
Published in: Basic & clinical pharmacology & toxicology (2021)
Saikosaponin-d (SSd) is a major bioactive triterpenoid saponin extracted from Bupleurum, which has anti-inflammatory, anticancer, antioxidative and anti-hepatic fibrosis effects. Due to the effects of Bupleurum-related formulations on cytochrome P450 (CYPs) expression still remain unclear, the combination therapies involved formulations containing Bupleurum may sometimes lead to unexpected drug-drug interactions in clinical practice. These interactions can limit the clinical applications of related formulations. In this study, we tried to explore the effects of SSd on CYP3A4 mRNA, protein expression and the enzyme activity in HepaRG cells by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blot (WB) and HPLC method, respectively. The interaction between SSd and CYP3A4 was analysed by molecular docking. HepaRG cells were cultured with different concentrations of SSd (0.5, 1, 5 and 10 μmol/L) for 72 hours. It is revealed that SSd can inhibit CYP3A4 mRNA and its protein expression, and also the enzyme activity. Molecular docking study demonstrated that SSd can bind to several key active sites of amino acid residues of CYP3A4 protein with hydrogen bonds and hydrophobic interactions. Thus, drug-drug interactions resulted by SSd inhibiting CYP3A4 need attention when formulations containing SSd or Bupleurum are co-administrated with drugs metabolized by CYP3A4.
Keyphrases