Login / Signup

Direct Identification of Proteolytic Cleavages on Living Cells Using a Glycan-Tethered Peptide Ligase.

Kaitlin SchaeferIrene LuiJames R ByrnesEmily KangJie ZhouAmy M WeeksJames A Wells
Published in: ACS central science (2022)
Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2 , induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.
Keyphrases
  • cell surface
  • living cells
  • single cell
  • fluorescent probe
  • cell therapy
  • stem cells
  • bone marrow
  • genome wide
  • high resolution
  • dna methylation
  • liquid chromatography
  • solid phase extraction