A whole-joint histopathologic grading system for murine knee osteoarthritis.
Caleb W GroteMatthew J MackayQinghua LuXiangliang LiuAnders R MeyerJinxi WangPublished in: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (2022)
This study aims to develop a comprehensive and easily executable histopathologic grading scheme for murine knee osteoarthritis (OA) using specific scoring criteria for both cartilage and periarticular changes, which may overcome important limitations of the existing grading systems. The new grading scheme was developed based on mouse knee OA models with observation periods up to 24 months of age (spontaneous OA) or 24-week post-injury (posttraumatic OA). Semi-quantitative assessments of the histopathologic OA changes were applied to all four quadrants per femorotibial joint for 50 joints (200 quadrants) using specific scoring criteria rather than mild to severe grades. Scoring elements per quadrant were as follows: cartilage lesion (0-7), osteophyte (0-3), subchondral bone change (0-3), synovitis (0-3), and ectopic periarticular soft-tissue chondrogenesis and ossification (0-3). The new histopathologic grading scheme had high intra- and interobserver reproducibility (correlation coefficients r > 0.95) across experienced and novice observers. Sensitivity and reliability analyses confirmed the ability of the new scheme to detect minimal but significant OA progression (p < 0.01) within a 2-week interval and to accurately identify tissue- and quadrant-specific OA severity within the joints. In conclusion, this study presents the first whole-joint histopathologic grading scheme for murine knee OA that covers all-stage osteoarthritic changes in all major joint tissues, including periarticular soft-tissue ossification that is not included in any of the existing OA grading systems. This reproducible scheme is easy to execute and sensitive to minimal OA progression without using computer software, suitable for quick OA severity assessments of the entire femorotibial joint.