Login / Signup

Sensitive detection of microRNA using a label-free copper nanoparticle system with polymerase-based signal amplification.

Jiangnan LuShuping LiangLi TanKun HuShulin ZhaoJianniao Tian
Published in: Analytical and bioanalytical chemistry (2020)
The abnormal expression of microRNAs (miRNAs) has been reported in many diseases, so it is of great interest to develop simple and accurate methods for the detection and analysis of miRNA expression. We have developed a novel biosensor to detect miRNAs. This method is based on a polymeric double-stranded DNA (dsDNA) copper nanoparticle (CuNP) template that is synthesised by a polymerase. When Cu2+ and ascorbic acid are added to the system, the dsDNA template (which is rich in A-T bases) promotes the formation of CuNPs, resulting in high fluorescence intensity. This system provides sensitive analysis of miRNA expression with a limit of detection down to 17.8 pmol/L, due to significant changes in the fluorescence signal of the system before and after the addition of the target. The linear range between F0-F and concentration of miR-122 is 80.0 pmol/L to 4.50 nmol/L, and the recovery rate in spiked HepG2 cell lysates is 93.33-102.53%. This method expands the applications of fluorescent DNA-CuNPs in the field of biosensor analysis, and can be used to detect and analyse any miRNA marker by changing the target recognition sequence. Graphical abstract A label-free dsDNA-CuNP-based and enzyme-assisted signal amplification method for microRNA is constructed.
Keyphrases