Login / Signup

Upper end of the central canal of the human spinal cord: Quantitative anatomical study and 3D modeling.

Etienne LefevreMegane Le QuangGuillaume ChotardSteven KnafoPierre MengelleYanis TaupinDominique LiguoroVincent JeckoJean-Rodolphe VignesPaul Roblot
Published in: Clinical anatomy (New York, N.Y.) (2024)
The upper end of the central canal of the human spinal cord has been repeatedly implicated in the pathogenesis of various diseases, yet its precise normal position in the medulla oblongata and upper cervical spinal cord remains unclear. The purpose of this study is to describe the anatomy of the upper end of the central canal with quantitative measurements and a three-dimensional (3D) model. Seven formalin-embalmed human brainstems were included, and the central canal was identified in serial axial histological sections using epithelial membrane antigen antibody staining. Measurements included the distances between the central canal (CC) and the anterior medullary fissure (AMF) and the posterior medullary sulcus (PMS). The surface and perimeter of the CC and the spinal cord were calculated, and its anterior-posterior and maximum lateral lengths were measured for 3D modeling. The upper end of the CC was identified in six specimens, extending from the apertura canalis centralis (ACC) to its final position in the cervical cord. Positioned on the midline, it reaches its final location approximately 15 mm below the obex. No specimen showed canal dilatation, focal stenosis, or evidence of syringomyelia. At 21 mm under the ACC in the cervical cord, the median distance from the CC to the AMF was 3.14 (2.54-3.15) mm and from the CC to the PMS was 5.19 (4.52-5.43) mm, with a progressive shift from the posterior limit to the anterior third of the cervical spinal cord. The median area of the CC was consistently less than 0.1 mm 2 . The upper end of the CC originates at the ACC, in the posterior part of the MO, and reaches its normal position in the anterior third of the cervical spinal cord less than 2 cm below the obex. Establishing the normal position of the upper end of this canal is crucial for understanding its possible involvement in cranio-cervical junction pathologies.
Keyphrases
  • spinal cord
  • spinal cord injury
  • neuropathic pain
  • endothelial cells
  • induced pluripotent stem cells
  • pluripotent stem cells
  • multiple sclerosis
  • mass spectrometry