Global proteomic analysis of preimplantational ovine embryos produced in vitro.
José Renato S PassosDenise Damasceno GuerreiroKamila S OtávioPedro C Dos Santos-NetoMarcela Souza-NevesFederico CuadroRichard Nuñez-OliveraMartina CrispoMaria Júlia B BezerraRenato Félix SilvaLaritza Ferreira de LimaJosé Ricardo FigueiredoIvan Cunha Bustamante-FilhoAlejo MenchacaArlindo de Alencar Araripe Noronha MouraPublished in: Reproduction in domestic animals = Zuchthygiene (2022)
The present study was conducted to characterize the major proteome of preimplantation (D6) ovine embryos produced in vitro. COCs were aspirated from antral follicles (2-6 mm), matured and fertilized in vitro and cultured until day six. Proteins were extracted separately from three pools of 45 embryos and separately run in SDS-PAGE. Proteins from each pool were individually subjected to in-gel digestion followed by LC-MS/MS. Three 'raw files' and protein lists were produced by Pattern Lab software, but only proteins present in all three lists were used for the bioinformatics analyses. There were 2,262 proteins identified in the 6-day-old ovine embryos, including albumin, zona pellucida glycoprotein 2, 3 and 4, peptidyl arginine deiminase 6, actin cytoplasmic 1, gamma-actin 1, pyruvate kinase, heat shock protein 90 and protein disulfide isomerase, among others. Major biological processes linked to the sheep embryo proteome were translation, protein transport and protein stabilization, and molecular functions, defined as ATP binding, oxygen carrier activity and oxygen binding. There were 42 enriched functional clusters according to the 2,147 genes (UniProt database). Ten selected clusters with potential association with embryo development included translation, structural constituent of ribosomes, ribosomes, nucleosomes, structural constituent of the cytoskeleton, microtubule-based process, translation initiation factor activity, regulation of translational initiation, cell body and nucleotide biosynthetic process. The most representative KEEG pathways were ribosome, oxidative phosphorylation, glutathione metabolism, gap junction, mineral absorption, DNA replication and cGMP-PKG signalling pathway. Analyses of functional clusters clearly showed differences associated with the proteome of preimplantation (D6) sheep embryos generated after in vitro fertilization in comparison with in vivo counterparts (Sanchez et al., 2021; https://doi.org/10.1111/rda.13897), confirming that the quality of in vitro derived blastocysts are unlike those produced in vivo. The present study portrays the first comprehensive overview of the proteome of preimplantational ovine embryos grown in vitro.
Keyphrases