Modular Engineering of Tyrosol Production in Escherichia coli.
Haiquan YangYuxiang XueCui YangWei ShenYou FanXianzhong ChenPublished in: Journal of agricultural and food chemistry (2019)
In this study, we investigated the effects of the different critical genes in the three modules on tyrosol production in Escherichia coli. Coexpression of the yahK and ARO10 genes increased the yield of tyrosol by 10% compared to that of the control. Tyrosol production by E. coli BFPT1 and E. coli BFPA1 was higher by 15.0% and 17.8% than that by the control, respectively, via coordinated expression of key genes from modules 2 and 3. The tyrosol yield of E. coli BFPE2 was 58.3% higher than that of the control (reaching 5.72 mM) when the expression levels of the key genes aroA and tyrA* from module 2 were balanced. The tyrosol yield of E. coli BFPG1 was increased by 52.6% (reaching 5.8 mM) compared to the control via coexpression of modules 1, 2, and 3. This work suggested that microbial production of tyrosol in E. coli has potential for industrial applications.