Login / Signup

Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species.

Qingyue ShenQian WangHanchen MiaoMarie ShimadaMotoo UtsumiZhongfang LeiZhenya ZhangOsamu NishimuraYasuhiro AsadaNaoshi FujimotoHirokazu TakanashiMichihiro AkibaKazuya Shimizu
Published in: Environmental science and pollution research international (2021)
Cyanobacterial blooms accompanied by taste and odor (T&O) compounds affect the recreational function and safe use of drinking water. Geosmin and 2-methylisoborneol (2-MIB) are the most common T&O compounds. In this study, we investigated the effect of temperature on geosmin and 2-MIB production in Dolichospermum smithii and Pseudanabaena foetida var. intermedia. More specifically, transcription of one geosmin synthase gene (geoA) and two 2-MIB synthase genes (mtf and mtc) was explored. Of the three temperatures (15, 25, and 35 °C) tested, the maximum Chl-a content was determined at 25 °C in both D. smithii and P. foetida var. intermedia. The maximum total geosmin concentration (19.82 μg/L) produced by D. smithii was detected at 25 °C. The total 2-MIB concentration (82.5 μg/L) produced by P. foetida var. intermedia was the highest at 35 °C. Besides, the lowest Chl-a content and minimum geosmin/2-MIB concentration were observed at 15 °C. There was a good positive correlation between geosmin/2-MIB concentration and Chl-a content. The expression levels of the geoA, mtf, and mtc genes at 15 °C were significantly higher than those at 25 and 35 °C. The transcription of the mtf and mtc genes in P. foetida var. intermedia was higher at 35 °C than at 25 °C. The results highlight unfavorable temperature can increase the potential of geosmin/2-MIB synthesis from the gene expression level in cyanobacteria. This study could provide basic knowledge of geosmin/2-MIB production by cyanobacteria for better understanding and management of T&O problems in drinking water.
Keyphrases