Insights into the Surface Binding and Structural Interference of Polyphenols with the Membrane Raft Domains in Relation to Their Distinctive Ability to Inhibit Preadipocyte Differentiation in 3T3-L1 Cells.
Ruifeng WangXin ShiChun-Mei LiPublished in: Journal of agricultural and food chemistry (2023)
Polyphenols with different structures have shown distinct variations in their ability to inhibit the differentiation of 3T3-L1 preadipocytes. However, the underlying mechanisms for these differences remain unclear. In the present study, the surface binding of polyphenols to different membrane domains was explored using coarse-grained molecular dynamics simulation (CG-MDs). Subsequently, this surface binding was confirmed in the liposome system by microscale thermophoresis. Additionally, the interference of polyphenols on the membrane raft's structure was studied through atomic force microscopy and high-content screening fluorescence microscopy. The results indicated that polyphenols with a differentiation-inhibitory ability, such as epicatechin-3-gallate (ECG) and epicatechin-3-gallate-(4β → 8, 2β → O → 7)-epicatechin-3-gallate (A-type ECG dimer), exhibited strong binding to ordered domains enriched in sphingolipids and cholesterol. This binding led to the structural disruption of membrane rafts by altering their size and shape, with the binding constant of 3.8 μM for ECG and 0.3 μM for A-type ECG dimer, respectively. In contrast, epicatechin (EC) with little differentiation-inhibitory ability had no effects on membrane rafts, and its binding constant with the ordered domain was 380.6 μM. Overall, the surface binding of polyphenols to ordered domains and the resulting disruption of membrane rafts structure might be a fundamental mechanism by which polyphenols inhibited the differentiation of 3T3-L1 preadipocytes.
Keyphrases
- molecular dynamics simulations
- dna binding
- heart rate variability
- atomic force microscopy
- single molecule
- binding protein
- magnetic resonance
- induced apoptosis
- high speed
- high resolution
- magnetic resonance imaging
- high throughput
- signaling pathway
- optical coherence tomography
- single cell
- endoplasmic reticulum stress
- quantum dots
- energy transfer