Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis.
Taiyi KuoTzu-Chieh ChenRebecca A LeeNguyen Huynh Thao NguyenAugusta E BroughtonDanyun ZhangJen-Chywan WangPublished in: Diabetes (2017)
Glucocorticoids promote lipolysis in white adipose tissue (WAT) to adapt to energy demands under stress, whereas superfluous lipolysis causes metabolic disorders, including dyslipidemia and hepatic steatosis. Glucocorticoid-induced lipolysis requires the phosphorylation of cytosolic hormone-sensitive lipase (HSL) and perilipin 1 (Plin1) in the lipid droplet by protein kinase A (PKA). We previously identified Pik3r1 (also called p85α) as a glucocorticoid receptor target gene. Here, we found that glucocorticoids increased HSL phosphorylation, but not Plin1 phosphorylation, in adipose tissue-specific Pik3r1-null (AKO) mice. Furthermore, in lipid droplets, the phosphorylation of HSL and Plin1 and the levels of catalytic and regulatory subunits of PKA were increased by glucocorticoids in wild-type mice. However, these effects were attenuated in AKO mice. In agreement with reduced WAT lipolysis, glucocorticoid- initiated hepatic steatosis and hypertriglyceridemia were improved in AKO mice. Our data demonstrated a novel role of Pik3r1 that was independent of the regulatory function of phosphoinositide 3-kinase in mediating the metabolic action of glucocorticoids. Thus, the inhibition of Pik3r1 in adipocytes could alleviate lipid disorders caused by excess glucocorticoid exposure.