Login / Signup

Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in Treatment of Metabolic-Associated Fatty Liver Disease.

Huanfen LuZhenglan BanKai XiaoMadi SunYongbo LiuFangman ChenTongfei ShiLi ChenDan ShaoMing ZhangWei Li
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
Exploration of medicines for efficient and safe management of metabolic-associated fatty liver disease (MAFLD) remains a challenge. Obeticholic acid (OCA), a selective farnesoid X receptor agonist, has been reported to ameliorate injury and inflammation in various liver diseases. However, its clinical application is mainly limited by poor solubility, low bioavailability, and potential side effects. Herein a hepatic-targeted nanodrugs composed of OCA and cholesterol-lowering atorvastatin (AHT) with an ideal active pharmaceutical ingredient (API) content for orally combined treatment of MAFLD is created. Such carrier-free nanocrystals (OCAHTs) are self-assembled, not only improving the stability in gastroenteric environments but also achieving hepatic accumulation through the bile acid transporter-mediated enterohepatic recycling process. Orally administrated OCAHT outperforms the simple combination of OCA and AHT in ameliorating of liver damage and inflammation in both acetaminophen-challenged mice and high-fat diet-induced MAFLD mice with less systematic toxicity. Importantly, OCAHT exerts profoundly reverse effects on MAFLD-associated molecular pathways, including impairing lipid metabolism, reducing inflammation, and enhancing the antioxidation response. This work not only provides a facile bile acid transporter-based strategy for hepatic-targeting drug delivery but also presents an efficient and safe full-API nanocrystal with which to facilitate the practical translation of nanomedicines against MAFLD.
Keyphrases
  • high fat diet induced
  • oxidative stress
  • drug delivery
  • insulin resistance
  • cancer therapy
  • fatty acid
  • metabolic syndrome
  • gold nanoparticles
  • climate change
  • low density lipoprotein