Login / Signup

Occupational skin dose from radionuclide contamination: one country's approach at standardising skin dose estimates using Varskin.

Katherine SharpeStephen McCallumJanice O'NeillCarolyn PatersonJennifer McCormickKate Sexton
Published in: Journal of radiological protection : official journal of the Society for Radiological Protection (2024)
The manipulation of unsealed radiopharmaceuticals by healthcare workers can cause accidental personal contamination leading to occupational radiation skin dose. The UK Ionising Radiations Regulations 2017 require that potential skin doses arising from reasonably foreseeable accident scenarios are included in risk assessments. Workers must be designated as classified if these dose estimates exceed 150 mSv equivalent dose averaged over 1 cm 2 . Updates from the UK Health and Safety Executive recently prompted many in the UK to review the classification of workers in Nuclear Medicine. Skin dose from contamination cannot be measured, it must be estimated. Varskin+ is a code that is widely recommended for estimating skin dose. The subjective choices made by users when defining modelled scenarios in Varskin+ lead to significant variation in the calculated skin doses. At the time of writing there is no definitive calculation method and all calculations rely on theoretical models. NHS Health Boards in Scotland have adopted a standardised framework for performing skin dose estimates for risk assessments. The parametric sensitivity of Varskin+ inputs were examined and the available evidence was reviewed. Generic, reasonably forseeable, worst-case accident scenarios were decided upon for: direct skin contamination, glove contamination and needlestick injury. Standardised inputs and assumptions for each scenario were compiled in a protocol that has been adopted by the Scottish Health Boards. The protocol allows for differences in practice between departments, but standardises most inputs. While significant uncertainty remains in the estimated skin doses, this approach reduces variation and enables the comparison of estimated skin doses between departments. The framework facilitates continuous improvement as more evidence is gathered to refine the standardised assumptions. Task by task skin dose estimates were made for workers in Nuclear Medicine in Scotland and many workers were designated classified as a result.
Keyphrases