Login / Signup

Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid-dependent pathway.

Lifang GengShuang YuYichang ZhangLin SuWanpei LuHong ZhuXinqiang Jiang
Published in: Plant physiology (2023)
NAC (NAM, ATAF1,2, and CUC2) transcription factors (TFs) play critical roles in controlling plant growth, development, and abiotic stress responses. However, few studies have examined NAC proteins related to drought stress tolerance in rose (Rosa chinensis). Here, we identified a drought and abscisic acid (ABA)-induced NAC TF, RcNAC091, that localizes to the nucleus and has transcriptional activation activity. Virus-induced silencing of RcNAC091 resulted in decreased drought stress tolerance, and RcNAC091 overexpression had the opposite effect. Specifically, ABA mediated RcNAC091-regulated drought tolerance. A transcriptomic comparison showed altered expression of genes involved in ABA signaling and oxidase metabolism in RcNAC091-silenced plants. We further confirmed that RcNAC091 directly targets the promoter of RcWRKY71 in vivo and in vitro. Moreover, RcWRKY71-slienced rose plants were not sensitive to both ABA and drought stress, whereas RcWRKY71-overexpressing plants were hypersensitive to ABA, which resulted in drought-tolerant phenotypes. The expression of ABA biosynthesis- and signaling-related genes was impaired in RcWRKY71-slienced plants, suggesting that RcWRKY71 might facilitate the ABA-dependent pathway. Therefore, our results show that RcWRKY71 is transcriptionally activated by RcNAC091, which positively modulates ABA signaling and drought responses. The results of this study provide insights into the roles of TFs as functional links between RcNAC091 and RcWRKY71 in priming resistance; our findings also have implications for the approaches to enhance the drought resistance of roses.
Keyphrases