Modelling the Impact of Mass Testing to Transition from Pandemic Mitigation to Endemic COVID-19.
Joel R KooAlex R CookJue Tao LimKen Wei TanBorame Sue Lee DickensPublished in: Viruses (2022)
As countries transition from pandemic mitigation to endemic COVID-19, mass testing may blunt the impact on the healthcare system of the liminal wave. We used GeoDEMOS-R, an agent-based model of Singapore's population with demographic distributions and vaccination status. A 250-day COVID-19 Delta variant model was run at varying maximal rapid antigen test sensitivities and frequencies. Without testing, the number of infections reached 1,021,000 (899,400-1,147,000) at 250 days. When conducting fortnightly and weekly mass routine rapid antigen testing 30 days into the outbreak at a maximal test sensitivity of 0.6, this was reduced by 12.8% (11.3-14.5%) and 25.2% (22.5-28.5%). An increase in maximal test sensitivity of 0.2 results a corresponding reduction of 17.5% (15.5-20.2%) and 34.4% (30.5-39.1%). Within the maximal test sensitivity range of 0.6-0.8, test frequency has a greater impact than maximal test sensitivity with an average reduction of 2.2% in infections for each day removed between tests in comparison to a 0.43% average reduction per 1% increase in test frequency. Our findings highlight that mass testing using rapid diagnostic tests can be used as an effective intervention for countries transitioning from pandemic mitigation to endemic COVID-19.