Suppression of lysosome metabolism-meditated GARP/TGF-β1 complexes specifically depletes regulatory T cells to inhibit breast cancer metastasis.
Jing MaYutong ChenTao LiYi CaoBin HuYuru LiuYouran ZhangXiaoyan LiJianing LiuWei ZhangHanjing NiuJinhua GaoZhongze ZhangKexin YueJiajia WangGuochen BaoChaojie WangPeng George WangTaotao ZouSongqiang XiePublished in: Oncogene (2024)
Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-β1 (TGF-β1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-β1 to specifically deplete human Tregs but not other cell types a challenge. TGF-β1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-β1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-β1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-β1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-β1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.
Keyphrases
- transforming growth factor
- epithelial mesenchymal transition
- regulatory t cells
- signaling pathway
- dendritic cells
- endothelial cells
- immune response
- fluorescent probe
- emergency department
- poor prognosis
- papillary thyroid
- living cells
- drug induced
- oxidative stress
- transcription factor
- binding protein
- high glucose
- squamous cell
- young adults
- mesenchymal stem cells
- bone marrow
- dna binding
- electronic health record