Dual Mechanism for the Emergence of Synchronization in Inhibitory Neural Networks.
Ashok S ChauhanJoseph D TaylorAlain NogaretPublished in: Scientific reports (2018)
During cognitive tasks cortical microcircuits synchronize to bind stimuli into unified perception. The emergence of coherent rhythmic activity is thought to be inhibition-driven and stimulation-dependent. However, the exact mechanisms of synchronization remain unknown. Recent optogenetic experiments have identified two neuron sub-types as the likely inhibitory vectors of synchronization. Here, we show that local networks mimicking the soma-targeting properties observed in fast-spiking interneurons and the dendrite-projecting properties observed in somatostatin interneurons synchronize through different mechanisms which may provide adaptive advantages by combining flexibility and robustness. We probed the synchronization phase diagrams of small all-to-all inhibitory networks in-silico as a function of inhibition delay, neurotransmitter kinetics, timings and intensity of stimulation. Inhibition delay is found to induce coherent oscillations over a broader range of experimental conditions than high-frequency entrainment. Inhibition delay boosts network capacity (ln2)-N-fold by stabilizing locally coherent oscillations. This work may inform novel therapeutic strategies for moderating pathological cortical oscillations.