Opportunity Analysis of Phosphorus Recovery from Municipal Wastewater for Cropland Based on the Simulated Vehicle Transport Distance in the Yangtze River Delta, China.
Xixi LiuGuorong ZhaoJiawen XieFeng ZhaoZhike LiZhi QiaoYindong TongPublished in: Environmental science & technology (2024)
With the rapid depletion of phosphate rocks and increasing agricultural demand, establishing a phosphorus (P) flow "loop" rather than a one-way trajectory between cropland and urban areas was imperative. Recovering P from municipal wastewater stood as a viable strategy to mitigate reliance on traditional P-containing chemical fertilizer. This study analyzed the intricate relationships between the potentials of P recovery from municipal wastewater and the P demand of croplands in the populated Yangtze River Delta (YRD), China. An indicator of the P vehicle transport distance was constructed and calculated to estimate the potential to recover and reuse P in agriculture, applying the simulated annealing (SA) algorithm and road networks obtained from OpenStreetMap (OSM). The results indicated that, on a regional scale, recovered P from municipal wastewater could fulfill 14.0% of the cropland P demands in the YRD, with a median P vehicle transport distance of 3.1 km/Mg of P. Notably, the P vehicle transport distance varied largely depending upon the cropland distributions, road density, and P recovery potential from municipal wastewater. The novel methodology developed here determined the optimal transportation routes for P recovery from wastewater treatment plants (WWTPs) to cropland, which played a crucial role in refining the wastewater management strategies aligned with the United Nations Sustainable Development Goals.