Login / Signup

LSTM-Based Virtual Load Sensor for Heavy-Duty Vehicles.

Abdurrahman İşbitiriciLaura GiarréWen XuPaolo Falcone
Published in: Sensors (Basel, Switzerland) (2023)
In this paper, a special recurrent neural network (RNN) called Long Short-Term Memory (LSTM) is used to design a virtual load sensor that estimates the mass of heavy vehicles. The estimation algorithm consists of a two-layer LSTM network. The network estimates vehicle mass based on vehicle speed, longitudinal acceleration, engine speed, engine torque, and accelerator pedal position. The network is trained and tested with a data set collected in a high-fidelity simulation environment called Truckmaker. The training data are generated in acceleration maneuvers across a range of speeds, while the test data are obtained by simulating the vehicle in the Worldwide harmonized Light vehicles Test Cycle (WLTC). Preliminary results show that, with the proposed approach, heavy-vehicle mass can be estimated as accurately as commercial load sensors across a range of load mass as wide as four tons.
Keyphrases
  • neural network
  • electronic health record
  • big data
  • machine learning
  • body composition
  • virtual reality
  • cross sectional
  • deep learning
  • resistance training
  • artificial intelligence