Estimating the Equilibrium Distribution of Perfluoroalkyl Acids and 4 of Their Alternatives in Mammals.
Flora AllendorfKai-Uwe GossNadin UlrichPublished in: Environmental toxicology and chemistry (2021)
Perfluoroalkyl acids (PFAAs) mostly exist as ionic compounds that are of major concern because of their accumulative behavior. The discussion about their risk is ongoing considering the increasing production of structurally similar alternatives. We conducted model calculations based on equilibrium distribution coefficients that allow studying the distribution of PFAAs and their alternatives in various mammalian organs through comparison to empirical measurements in humans and rats. The calculations rely on experimentally determined distribution coefficients of a series of PFAAs and 4 of their alternatives to physiological matrices such as structural proteins, storage lipids, membrane lipids, albumin, and fatty acid binding protein (FABP). The relative sorption capacities in each organ were calculated from the combination of distribution coefficients and physiological data. The calculated distribution of PFAAs and alternatives within the organs showed that albumin and membrane lipids and, to a lesser extent, structural proteins have the highest relative sorption capacities for the compounds. Sorption to FABP is only relevant in the distribution of short-chain PFAAs. Storage lipids play a minor role in the distribution of all studied compounds. Our calculated distribution of PFAAs was evaluated by comparison to reported PFAA concentrations in various organs. Environ Toxicol Chem 2021;40:910-920. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.