Induction of ER Stress in Acute Lymphoblastic Leukemia Cells by the Deubiquitinase Inhibitor VLX1570.
Paola PellegriniKarthik SelvarajuElena FaustiniArjan MofersXiaonan ZhangJens TernerotAlice SchubertStig LinderPádraig D ArcyPublished in: International journal of molecular sciences (2020)
The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.
Keyphrases
- protein protein
- cell cycle arrest
- induced apoptosis
- endoplasmic reticulum stress
- acute lymphoblastic leukemia
- small molecule
- multiple myeloma
- cell death
- binding protein
- oxidative stress
- pi k akt
- amino acid
- poor prognosis
- newly diagnosed
- diffuse large b cell lymphoma
- magnetic resonance
- computed tomography
- young adults
- heat shock protein
- diabetic rats
- dna repair
- high glucose
- allogeneic hematopoietic stem cell transplantation
- drug induced
- heat shock
- acute myeloid leukemia
- heat stress
- transcription factor
- contrast enhanced
- childhood cancer