A non-invasive magnetic resonance imaging approach for assessment of real-time microcirculation dynamics.
Tameshwar GaneshMarvin EstradaHerman YegerJames DuffinHai-Ling Margaret ChengPublished in: Scientific reports (2017)
We present a novel, non-invasive magnetic resonance imaging (MRI) technique to assess real-time dynamic vasomodulation of the microvascular bed. Unlike existing perfusion imaging techniques, our method is sensitive only to blood volume and not flow velocity. Using graded gas challenges and a long-life, blood-pool T 1-reducing agent gadofosveset, we can sensitively assess microvascular volume response in the liver, kidney cortex, and paraspinal muscle to vasoactive stimuli (i.e. hypercapnia, hypoxia, and hypercapnic hypoxia). Healthy adult rats were imaged on a 3 Tesla scanner and cycled through 10-minute gas intervals to elicit vasoconstriction followed by vasodilatation. Quantitative T 1 relaxation time mapping was performed dynamically; heart rate and blood oxygen saturation were continuously monitored. Laser Doppler perfusion measurements confirmed MRI findings: dynamic changes in T 1 corresponded with perfusion changes to graded gas challenges. Our new technique uncovered differential microvascular response to gas stimuli in different organs: for example, mild hypercapnia vasodilates the kidney cortex but constricts muscle vasculature. Finally, we present a gas challenge protocol that produces a consistent vasoactive response and can be used to assess vasomodulatory capacity. Our imaging approach to monitor real-time vasomodulation may be extended to other imaging modalities and is valuable for investigating diseases where microvascular health is compromised.
Keyphrases
- contrast enhanced
- magnetic resonance imaging
- high resolution
- heart rate
- room temperature
- magnetic resonance
- computed tomography
- diffusion weighted imaging
- carbon dioxide
- healthcare
- randomized controlled trial
- heart rate variability
- blood pressure
- skeletal muscle
- public health
- endothelial cells
- functional connectivity
- intensive care unit
- mass spectrometry
- respiratory failure
- young adults
- acute respiratory distress syndrome
- human health