Login / Signup

Synaptic Characteristics of Amorphous Boron Nitride-Based Memristors on a Highly Doped Silicon Substrate for Neuromorphic Engineering.

Jinju LeeJi-Ho RyuBoram KimFayyaz HussainChandreswar MahataEunjin SimMuhammad IsmailYawar AbbasHaider AbbasDong Keun LeeMin-Hwi KimYoon KimChanghwan ChoiByung-Gook ParkSungjun Kim
Published in: ACS applied materials & interfaces (2020)
In this study, the resistive switching and synaptic properties of a complementary metal-oxide semiconductor-compatible Ti/a-BN/Si device are investigated for neuromorphic systems. A gradual change in resistance is observed in a positive SET operation in which Ti diffusion is involved in the conducting path. This operation is extremely suitable for synaptic devices in hardware-based neuromorphic systems. The isosurface charge density plots and experimental results confirm that boron vacancies can help generate a conducting path, whereas the conducting path generated by a Ti cation from interdiffusion forms is limited. A negative SET operation causes a considerable decrease in the formation energy of only boron vacancies, thereby increasing the conductivity in the low-resistance state, which may be related to RESET failure and poor endurance. The pulse transient characteristics, potentiation and depression characteristics, and good retention property of eight multilevel cells also indicate that the positive SET operation is more suitable for a synaptic device owing to the gradual modulation of conductance. Moreover, pattern recognition accuracy is examined by considering the conductance values of the measured data in the Ti/a-BN/Si device as the synaptic part of a neural network. The linear and symmetric synaptic weight update in a positive SET operation with an incremental voltage pulse scheme ensures higher pattern recognition accuracy.
Keyphrases