Exopolysaccharide Isolated from Lactobacillus plantarum L-14 Has Anti-Inflammatory Effects via the Toll-Like Receptor 4 Pathway in LPS-Induced RAW 264.7 Cells.
Mijin KwonJaehoon LeeSangkyu ParkOh-Hee KwonJeongmin SeoSangho RohPublished in: International journal of molecular sciences (2020)
Inflammation is a biological response of the immune system to defend the body from negative stimulation. However, the excessive inflammatory response can damage host tissues and pose serious threats. Exopolysaccharide (EPS), one of the postbiotics, is secreted from lactic acid bacteria. Although many studies have described the beneficial effects of EPS, such as its anti-inflammatory and anti-oxidant effects, its underlying mechanisms have remained to be poorly understood. Thus, we identified that EPS obtained from Lactobacillus plantarum L-14 was a homogeneous polysaccharide primarily comprised of glucose. To examine these anti-inflammatory effects, an inflammatory response was induced by lipopolysaccharide (LPS) administration to mouse macrophage RAW 264.7 cells that were pretreated with EPS. The anti-inflammatory effects of EPS were identified by analyzing the changes within inflammatory markers at the molecular level. We demonstrate here that EPS suppressed proinflammatory mediators, such as cyclooxygenase-2, interleukin-6, tumor necrosis factor-α, and interleukin-1β, and downregulated the expression of an inducible nitric oxide synthase known to lead to oxidative stress. It was also confirmed that EPS had anti-inflammatory effects by blocking the interaction of LPS with Toll-like receptor 4 (TLR4), as demonstrated by using the known TLR4 inhibitor TAK-242. In addition, we found that EPS itself could suppress the expression of TLR4. Consequently, our data suggest that EPS can be a potential target for the development of natural product-derived medicine for treating inflammatory diseases related to TLR4.
Keyphrases
- inflammatory response
- toll like receptor
- lps induced
- oxidative stress
- lipopolysaccharide induced
- nuclear factor
- anti inflammatory
- induced apoptosis
- nitric oxide synthase
- nitric oxide
- immune response
- cell cycle arrest
- lactic acid
- type diabetes
- electronic health record
- cell proliferation
- adipose tissue
- climate change
- body mass index
- physical activity
- weight loss
- drug induced
- deep learning
- cell death