Over One Million DNA and Protein Events Through Ultra-Stable Chemically-Tuned Solid-State Nanopores.
Jugal SahariaYapa Mudiyanselage Nuwan Dhananjaya Yapa BandaraBuddini Iroshika KarawdeniyaJason Rodger DwyerMin Jun KimPublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h -1 . The current noise is exceptionally stable with traces typically showing <10 pA h -1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.
Keyphrases
- solid state
- low cost
- circulating tumor
- high frequency
- single molecule
- machine learning
- cell free
- air pollution
- big data
- electronic health record
- randomized controlled trial
- systematic review
- protein protein
- high resolution
- artificial intelligence
- amino acid
- binding protein
- small molecule
- circulating tumor cells
- data analysis
- optical coherence tomography
- optic nerve
- walled carbon nanotubes