Structural Color Materials for Optical Anticounterfeiting.
Wei HongZhongke YuanXu Dong ChenPublished in: Small (Weinheim an der Bergstrasse, Germany) (2020)
The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long-term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli-responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented.