N-Terminal-Driven Binding Mechanism of an Antigen Peptide to Human Leukocyte Antigen-A*2402 Elucidated by Multicanonical Molecular Dynamic-Based Dynamic Docking and Path Sampling Simulations.
Gert-Jan BekkerNarutoshi KamiyaPublished in: The journal of physical chemistry. B (2021)
We have applied our advanced multicanonical molecular dynamics (McMD)-based dynamic docking methodology to investigate the binding mechanism of an HIV-1 Nef protein epitope to the Asian-dominant allele human leukocyte antigen (HLA)-A*2402. Even though pMHC complex formation [between a Major histocompatibility complex (MHC) class I molecule, which is encoded by an HLA allele, and an antigen peptide] is one of the fundamental processes of the adaptive human immune response, its binding mechanism has not yet been well studied, partially due to the high allelic variation of HLAs in the population. We have used our developed McMD-based dynamic docking method and have successfully reproduced the native complex structure, which is located near the free energy global minimum. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that the peptide binding is initially driven by the highly positively charged N-terminus of the peptide that is attracted to the various negatively charged residues on the MHC molecule's surface. Upon nearing the pocket, the second tyrosine residue of the peptide anchors the peptide by strongly binding to the B-site of the MHC molecule via hydrophobic driven interactions, resulting in a very strong bound complex structure. Our methodology can be effectively used to predict the bound complex structures between MHC molecules and their antigens to study their binding mechanism in close detail, which would help with the development of new vaccines against cancers, as well as viral infections such as HIV and COVID-19.
Keyphrases
- molecular dynamics
- endothelial cells
- density functional theory
- immune response
- binding protein
- dna binding
- hepatitis c virus
- human immunodeficiency virus
- antiretroviral therapy
- protein protein
- molecular dynamics simulations
- hiv positive
- induced pluripotent stem cells
- hiv infected
- hiv testing
- high resolution
- young adults
- south africa
- mass spectrometry
- ionic liquid
- amino acid