Expression and Functional Characterization of Drug Transporters in Brain Microvascular Endothelial Cells Derived from Human Induced Pluripotent Stem Cells.
Toshiki KurosawaYuma TegaKei HiguchiTomoko YamaguchiTakashi NakakuraTatsuki MochizukiHiroyuki KusuharaKenji KawabataYoshiharu DeguchiPublished in: Molecular pharmaceutics (2018)
Brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPS-BMECs) have been proposed as a new blood-brain barrier model, but their transport function has not been fully clarified. Therefore, in this study, we investigated the gene expression and function of transporters in hiPS-BMECs by means of quantitative reverse transcription-PCR, in vitro transcellular transport studies, and uptake experiments. mRNAs encoding ABC and SLC transporters, such as BCRP, MCT1, CAT1, and GLAST, were highly expressed in hiPS-BMECs. Transcellular transport studies showed that prazosin, [14C]l-lactate, [3H]l-arginine, and [3H]l-glutamate (substrates of BCRP, MCT1, CAT1, and GLAST, respectively) were transported asymmetrically across the hiPS-BMEC monolayer. Substrates of LAT1, OCTN2, CAT1, GLAST, MCT1, and proton-coupled organic cation (H+/OC) antiporter were taken up by hiPS-BMECs in a time-, temperature-, and concentration-dependent manner, and the uptakes were markedly decreased by inhibitors of the corresponding transporter. These results indicate that hiPS-BMECs express multiple nutrient and drug transporters.
Keyphrases