In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic data analysis requires a rapid, powerful and interpretable detection process, especially in a high-dimensional environment. We study the nonlinear patterns among the expression of pairs of genes from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear patterns, some of which are driven by known cancer subtypes, some of which are novel.