Longitudinal Investigation of the Gut Microbiota in Goat Kids from Birth to Postweaning.
Yimin ZhuangJianmin ChaiKai CuiYanliang BiQi-Yu DiaoWenqin HuangHunter UsdrowskiNai-Feng ZhangPublished in: Microorganisms (2020)
Early microbial colonization in the gut impacts animal performance and lifelong health. However, research on gut microbial colonization and development in young ruminants, especially after weaning, is currently limited. In this study, next-generation sequencing technology was performed to investigate the temporal dynamic changes of the microbial community in the jejunum and colon of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days (d) of age. As age increased, significant increases in microbial diversity, including the number of Observed OTUs and the Shannon Index, were observed in both the jejunum and colon. Regarding beta diversity, significant shifts in community membership and structure from d1 to d84 were observed based on both Bray-Curtis and Jaccard distances. With increasing age, dominant genera in the jejunum shifted from Lactobacillus to unclassified Ruminococcaceae, unclassified Lachnospiraceae and unclassified Clostridiales through starter supplementation, whereas colonic dominant genera changed from Lactobacillus and Butyricicoccus, within d1-d28, to unclassified Ruminococcaceae, unclassified Clostridiales and Campylobacter after solid diet supplementation. The linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed bacterial features that are stage-specific in the jejunum and colon, respectively. In the jejunum and colon, a significantly distinct structure and membership of the microbiota was observed across all ages. The growth stage-associated microbiota in each gut compartment was also identified as a marker for biogeography. Our data indicate the temporal and spatial differences of the gut microbiota in goats are important for their performance and health. Early microbial colonization can influence microbial composition in later life (e.g., post-weaning phase). This study provides insights that the temporal dynamics of gut microbiota development from newborn to post-weaning can aid in developing feeding strategies to improve goat health and production.
Keyphrases
- microbial community
- healthcare
- mental health
- public health
- antibiotic resistance genes
- mechanical ventilation
- health information
- physical activity
- gene expression
- single cell
- escherichia coli
- cross sectional
- intensive care unit
- deep learning
- big data
- pregnant women
- acute respiratory distress syndrome
- electronic health record
- data analysis
- risk assessment
- circulating tumor cells