Characterization and genetic differences analysis in adventitious roots development of 38 Populus germplasm resources.
Min ZhangXinglu ZhouXiaodong XiangHantian WeiLei ZhangJian-Jun HuPublished in: Plant molecular biology (2024)
To select poplar clones with excellent adventitious roots development (ARD) and deepen the understanding of its molecular mechanism, a comprehensive evaluation was conducted on 38 Populus germplasm resources with cuttings cultured in the greenhouse. Genetic differences between poplar clones with good ARD and with poor ARD were explored from the perspectives of genomics and transcriptomics. By cluster analysis of the seven adventitious roots (AR) traits, the materials were classified into three clusters, of which cluster I indicated excellent AR developmental capability and promising breeding potential, especially P.×canadensis 'Guariento', P. 'jingtong1', P. deltoides 'Zhongcheng5', P. deltoides 'Zhongcheng2'. At the genomic level, the cross-population composite likelihood ratio (XP-CLR) analysis identified 1944 positive selection regions related to ARD, and variation detection analysis identified 3426 specific SNPs and 687 specific Indels in the clones with good ARD, 3212 specific SNPs and 583 specific Indels in the clones with poor ARD, respectively. Through XP-CLR, variation detection, and weighted gene co-expression network analysis based on transcriptome data, eight major putative genes associated with poplar ARD were primary identified, and a co-expression network of eight genes was constructed, it was discovered that CSD1 and WRKY6 may be important in the ARD. Subsequently, we confirmed that SWEET17 had a non-synonymous mutation at the site of 928,404 in the clones with poor ARD, resulting in an alteration of the amino acid. After exploring phenotypic differences and the genetic variation of adventitious roots development in different poplar clones, this study provides valuable reference information for future poplar breeding and genetic improvement.
Keyphrases
- genome wide
- network analysis
- copy number
- dna methylation
- poor prognosis
- amino acid
- gene expression
- machine learning
- transcription factor
- big data
- computed tomography
- magnetic resonance imaging
- electronic health record
- rna seq
- genome wide identification
- deep learning
- binding protein
- social media
- artificial intelligence
- health information
- quantum dots