Raiders of the last ark: the impacts of feral cats on small mammals in Tasmanian forest ecosystems.
Billie T LazenbyN J MooneyChristopher R DickmanPublished in: Ecological applications : a publication of the Ecological Society of America (2021)
Feral individuals of the cat Felis catus are recognized internationally as a threat to biodiversity. Open, non-insular systems support a large proportion of the world's biodiversity, but the population-level impacts of feral cats in these systems are rarely elucidated. This limits prioritization and assessment of the effectiveness of management interventions. We quantified the predatory impact of feral cats on small mammals in open, non-insular forest systems in Tasmania, Australia in the context of other factors hypothesized to affect small mammal densities and survival, namely the density of a native carnivore, co-occurring small mammals, and rainfall. Change in feral cat density was the most important determinant of small mammal density and survival. We calculated that, on average, a 50% reduction in feral cat density could result in 25% and 10% increases in the density of the swamp rat Rattus lutreolus and long-tailed mouse Pseudomys higginsi, respectively. Low-level culling of feral cats that we conducted on two of our four study sites to experimentally alter feral cat densities revealed that swamp rat survival was highest when feral cat densities were stable. We conclude that feral cats exert downward pressure on populations of indigenous small mammals in temperate forest systems. However, alleviating this downward pressure on prey by culling a large proportion of the feral cat population is difficult as current methods for reducing feral cat populations in cool temperate forest systems are ineffective, and potentially even counterproductive. We suggest using an adaptive approach that regularly and robustly monitors how feral cats and small mammals respond to management interventions that are intended to conserve vulnerable prey species.