Sex Differences in Cognitive-Motor Dual-Task Training Effects and in Brain Processing of Semi-Elite Basketball Players.
Stefania LuciaMerve AydinFrancesco Di RussoPublished in: Brain sciences (2023)
In the current study, we aimed at evaluating the possible sex differences in cognitive-motor dual-task training (CMDT) effects on the sport and cognitive performance of semi-elite basketball athletes. Moreover, we investigated the CMDT effects on proactive brain processing using event-related potential (ERP) analysis. Fifty-two young basketball athletes (age 16.3 years) were randomly assigned into an experimental (Exp) group performing the CMDT, and a control (Con) group executing standard motor training. Before and after a 5-week training intervention, participants' motor performance was evaluated using dribbling tests. Cognitive performance was assessed by measuring response time and accuracy in a discrimination response task (DRT). Brain activity related to motor and cognitive preparation was measured through the Bereitschaftspotential (BP) and the prefrontal negativity (pN) ERP components. The CMDT involved the simultaneous execution of dribbling exercises and cognitive tasks which were realized using interactive technologies on the court. Results showed that both groups had some enhancements from pre- to post-tests, but only the Exp group enhanced in the dribbling exercise. In the DRT after the CMDT, females performed faster than males in the Exp group. All groups, except for the Con group of males, performed the DRT more accurately after the training. According to the ERP results, in the Exp group of males and in Exp and Con group of females, we found an increase in pN amplitude (associated with better accuracy); in the Exp group of females and in Exp and Con group of males, we found an increase in BP (associated with better response time). In conclusion, the present study endorsed the efficacy of the proposed CMDT protocol on both the sport and cognitive performance of semi-elite basketball players and showed that the neural basis of these benefits may be interpreted as sex-related compensatory effects.