Yeast cells for encapsulation of bioactive compounds in food products: A review.
Elahe DadkhodazadeElham KhanniriNasim KhorshidianSeyede Marziyeh HosseiniAmir M MortazavianEhsan Moghaddas KiaPublished in: Biotechnology progress (2021)
Nowadays bioactive compounds have gained great attention in food and drug industries owing to their health aspects as well as antimicrobial and antioxidant attributes. Nevertheless, their bioavailability, bioactivity, and stability can be affected in different conditions and during storage. In addition, some bioactive compounds have undesirable flavor that restrict their application especially at high dosage in food products. Therefore, food industry needs to find novel techniques to overcome these problems. Microencapsulation is a technique, which can fulfill the mentioned requirements. Also, there are many wall materials for use in encapsulation procedure such as proteins, carbohydrates, lipids, and various kinds of polymers. The utilization of food-grade and safe carriers have attracted great interest for encapsulation of food ingredients. Yeast cells are known as a novel carrier for microencapsulation of bioactive compounds with benefits such as controlled release, protection of core substances without a significant effect on sensory properties of food products. Saccharomyces cerevisiae was abundantly used as a suitable carrier for food ingredients. Whole cells as well as cell particles like cell wall and plasma membrane can act as a wall material in encapsulation process. Compared to other wall materials, yeast cells are biodegradable, have better protection for bioactive compounds and the process of microencapsulation by them is relatively simple. The encapsulation efficiency can be improved by applying some pretreatments of yeast cells. In this article, the potential application of yeast cells as an encapsulating material for encapsulation of bioactive compounds is reviewed.