A hepatitis B virus core antigen-based virus-like particle vaccine expressing SARS-CoV-2 B and T cell epitopes induces epitope-specific humoral and cell-mediated immune responses but confers limited protection against SARS-CoV-2 infection.
Anna M HassebroekHarini SooryanarainConnie L HeffronSeth A HawksTanya LeRoithThomas E CecereWilliam B StoneDebra WalterHassan M MahsoubBo WangDebin TianHannah M IvesterIrving C AllenAlbert J AugusteNisha K DuggalChenming ZhangXiang-Jin MengPublished in: Journal of medical virology (2023)
The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- immune response
- hepatitis b virus
- high fat diet induced
- escherichia coli
- wild type
- rheumatoid arthritis
- single cell
- type diabetes
- monoclonal antibody
- poor prognosis
- clinical trial
- cell therapy
- toll like receptor
- insulin resistance
- mesenchymal stem cells
- endothelial cells
- working memory
- binding protein
- metabolic syndrome
- pseudomonas aeruginosa
- liver failure
- protein protein
- candida albicans